Characterizing Large-Scale Computational Physics

Timothy J. Williams
Argonne Leadership Computing Facility
Argonne National Laboratory

APS March Meeting
March 22, 2011
Biases

- **Intentional**
 - Large-scale

- **Inevitable**
 - Department of Energy
 - NERSC
 - Advanced Computing Laboratory (LANL)
 - Argonne Leadership Computing Facility
 - Plasma physics
 - USA
Questions

- **Is it physics?**
 - Lattice QCD
 - Plasma simulation
 - Molecular dynamics
 - Electronic Structure
 - Protein folding

- **Is it large-scale?**
 - 20% of leadership-class machine
 - Distributed-memory parallelism
 - Too large/slow for O(100) processor cluster
Sources

- **Journals**
 - Physical Review
 - Journal of Computational Physics
 - IEEE Computer

- **Proceedings**
 - SC, IPDPS
 - Extreme Scale workshops

- **Computer center annual reports**
 - NERSC, ALCF, OLCF, PSC, TACC

- **Reviews/reports**
 - SciDAC Review
 - Computation as a Tool for Discovery in Physics (NSF report, 2002)

- **Books**
 - Petascale Computing: Algorithms and Applications (Bader, 2008)
 - Various “Computational Physics” texts
Physics Areas

<table>
<thead>
<tr>
<th>Condensed Matter</th>
<th>High Energy</th>
<th>Astrophysics/Relativity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td>Atomic/Molecular</td>
<td>Nuclear</td>
</tr>
<tr>
<td>Climate/weather</td>
<td>Turbulence</td>
<td>Geophysics</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Application Types

- Lattice QCD
- Electronic Structure
- Electromagnetics
- Accelerator Beam
- Monte Carlo Transport
- Climate
- Nuclear Structure
- Combustion
- Nuclear Burn
- DDT

- Plasma
 - PIC
 - Kinetic
 - Fluid(s)

- CFD
 - DNS
 - Lattice Gas/Boltzmann
 - LES/RANS
 - SPH

- Cosmology Structure Evolution
- Structural Mechanics
- Earthquake
- Seismic Wave Propagation
- Dynamic Rupture
- Atomistic Molecular Dynamics

Argonne National Laboratory
Wide Range of Scales of Interest
Turbulence

Turbulent Fluid Flow.

- **Range of length scales in 3D turbulence** ~ $R_e^{9/4}$
- **State-of-the-art DNS (direct numerical simulation):** $R_e = O(10^4)$
 - Range of length scales = $O(10^9)$

- **Need for more**
 - Physical R_e for commercial jet aircraft = $O(10^7 – 10^8)$
 - Physical R_e for atmospheric flow = $O(10^7 – 10^8)$
Cosmology: Simulate evolution of large-scale structure of the universe

- **State-of-the-art simulation:** resolve galaxy-halo-sized structures
- **Range of length scales is** $> 10^5$
 - Simulation domain 1 Gpc on a side
 - Force resolution $O(10)$ kpc
- **Range of mass scales is** 10^4-10^5
 - 1 ptcl is 1-10 billion M_{sun}
 - Milky Way dark matter halo is 60 billion - 3 trillion solar masses
 - 10 billion ptcles
- **Need for more**
 - Resolve galaxies (“baryonic” matter)...stars
Plasma Physics

Fusion energy applications.

(http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5644908&isnumber=5644843)
Plasma Physics

Electrostatic ion microturbulence in a tokamak

- Need for more
 - Electron kinetics, full-\(f\)
 - Magnetic fluctuations
Geophysics

Seismic Wave Propagation.

- **State-of-the-art simulation**
 - M8: magnitude-8 on San Andreas Fault
 - 800 x 400 km area in Southern California (85 km deep)
 - Frequencies 0-2 Hz
 - 6 minutes simulated time
 - Grid resolution 40 m => 436 billion grid cells
 - CFL => 160,000 timesteps

- **Need for more**
 - Sub-skyscraper building relevance: 3-10 Hz
Brute Force Computational Approach
Turbulence

Turbulent Fluid Flow.

- **Direct Numerical Simulation: Discrete solution of Navier-Stokes equations**
 - Finite volume
 - Spectral
 - Pseudospectral
 - Spectral element

- **Less brutish, but less general**
 - Reynolds-averaged Navier-Stokes (RANS)
 - Large-eddy simulation (LES)
Simulate evolution of large-scale structure of the universe.

- **Dark matter: Particle-mesh**
 - Poisson solve for long-range interactions
 - Short-range interactions
 - \texttt{MC^3} code: local particle-particle interaction
 - \texttt{Enzo} code: AMR
Plasma Physics

Fusion energy applications: tokamak ion microturbulence

- **Ions:** Vlasov equation for phase-space distribution $f(x,p)$
 - Reduce to *gyrokinetic* form representing sufficient
 - **GTC** code: particle-in-cell (PIC) ions
 - **GYRO** code: discretize (x,p) phase space

- **Electromagnetic fields:** Maxwell's equations
 - Reduce to Poisson equation in electrostatic limit

Figure: Tang, ALCF Early Science Kick-Off Workshop (http://workshops.alcf.anl.gov/esp10/agenda/)
Seismic Wave Propagation.

- **Discrete solution of equations for anelastic solids**
 - Finite difference (FD)
 - Finite volume
 - Spectral element
 - Finite element

- **AWP-ODC code: staggered FD scheme**
 - 4^{th} order in space, 2^{nd} order in time
 - Split-node algorithm for dynamic fault rupture modeling
 - M8 problem: uniform mesh
Persistent Players
Live Long
END