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Abstract 

A new algorithm is presented, designed to solve tridiagonal matrix problems efficientiy 
with parallel computers (multiple instruction stream, multiple data stream (MIMD) ma- 
chines with distributed memory). The algorithm is designed to be extendable to higher order 
banded diagonal systems. 

Keywords: Tridiagonal systems; Linear algebra; Distributed memory multiprocessor; Banded 
diagonal matrix, Interprocessor communication 

1. Introduction 

Currently, there are several popular methods for parailelization of the tridiago- 
nal problem. The “most important” of these have recently been described with a 
unified approach, through purullel factorizution [l]. Essentially, parallel factoriza- 
tion divides and solves the problem by the following steps: 
(1) Factor the original matrix into a product of a block matrix (that can be divided 

up between processors) and a reduced matrix, which couples the block prob- 
lems. 

(2) Solve each block problem with one processor. 
(3) Solve the reduced matrix problem. 
Here, we propose a new approach to parallel solution of such systems. It is 
conceptually different from parallel factorization, in that the first step is avoided: 
no manipulations are performed on the original matrix before subdividing it among 
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the processors. Avoiding this step has three advantages: simplicity, speed, and one 
less stability concern. 

The method here is analogous to the solution of an inhomogeneous linear 
differential equation, where the solution is a “particular” solution added to an 
arbitrary linear combination of “homogeneous” solutions. The coefficients of the 
homogeneous solutions are later determined by boundary conditions. In our 
parallel method, each processor is given a contiguous subsection of a tridiagonal 
system. Even with no information about the neighboring subsystems, the solution 
can be obtained up to two constants. This completes the bulk of the necessary 
calculations. Once each processor has obtained such a solution, the global solution 
can be found by matching endpoints. 

This approach allows a number of desirable features in both generality and 
efficient implementation. First, the method is readily generalizable to 5diagonal 
and higher banded systems, as discussed in Section 6. Second, the particular and 
homogeneous solutions can be calculated quite efficiently, since there are a 
number of overlapping calculations. Usual serial LU decomposition of a single 
M x M tridiagonal system requires 8M floating point operations and a temporary 
storage array of M elements [3,61. For the parallel routine below, the three 
solutions (one particular and two homogeneous) are calculated with 13M opera- 
tions (not 3 x 844 = 24M) and 120 additional temporary storage arrays, while 
leaving the input data intact. Third, the interprocessor communication can be 
performed quite efficiently, by the all-to-all broadcast method described in Section 
4. Finally, vector processors can be utilized effectively in cases where there are a 
number of banded diagonal systems to be solved. 

This paper gives an implementation of this method. The algorithm is designed 
with the following objectives, listed in order of priority. First, the algorithm must 
minimize the number of interprocessor communications opened, since this is the 
most time consuming process. Second, the algorithm allows flexibility of the 
specific solution method of the tridiagonal submatrices. Here, we employ a variant 
of LU decomposition, but this is easily replaced with cyclic reduction or other. 
Third, we wish to minimize storage needs. 

The remainder of this paper is organized as follows. Section 2 outlines the 
analysis underlying the routine. Section 3 describes an algorithm for computing the 
particular and two homogeneous solutions in 13M operations. Section 4 gives a 
method to assemble the reduced system efficiently in each processor, solve it, and 
complete the solution. Section 5 covers time consumption and performance of the 
algorithm. Section 6 gives some conclusions and generalizations of this routine. 
The Appendix gives program segments. 

2. Basic algorithm 

We consider the problem of solving the N X N linear system 

AX=R, (2-l) 
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on a parallel computer with P processors. For simplicity, we assume N = PM, with 
M an integer. 

Our algorithm is as follows. First, the linear system of order N is subdivided 
into P subsystems of order M. Thus, the N X N matrix A is divided into P 
submatrices L,, each of dimension M X M, 
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for p = 1, 2,. . . P, with similar and obvious definitions for x and r. For brevity, we 
have defined ap = A Mcp _ lj+m, corresponding to the mth subdiagonal element of 
the pth submatyix. Similarly, II: = BMcp_ Ij+nt and cc = C M(p-l)+m’ 

For each subsystem p we define three vectors xf, xzH, and xpLH as the solutions 
to the equations 

Lpxp” = rp, P-9) 

LpxFH= (-a; 0 O...O)T, (2-10) 

L xLH=(OOO...-cQT. 
P P 

(2-11) 

The superscripts on the x stand for “particular” solution, “upper homogeneous” 
solution, and “lower homogeneous” solution respectively, from the inhomoge- 
neous differential equation analogy. 

The general solution of subsystem p consists of xf added to an arbitrary linear 
combination of xpu” and xkH, 

xp = x; + l;Hxp” + r$HX;H, (2-12) 

where [:H and ep”” are yet undetermined coefficients that depend on coupling to 
the neighboring solutions. To find ,$FH and tLH, Eq. (2-12) is substituted into Eq. 
(2-l). Straightforward calculation and various definitions in this section show that 
$H = 6,“” = 0, and the remaining 2P - 2 coefficients are determined by the 
solution to the following tridiagonal linear system, or “reduced” system 

- 1 xi; 

I 1 

f 

1) 
\ 

(2-13) 
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where x~,~ refers to the mth element of the appropriate solution from the pth 
submatrix. 

The solution of Eq. (2-l), via subdivision and reassembly, is now complete. The 
outline of the algorithm is as follows: 
(1) For each processor, find x:, x:~, and xkH by solving Eqs. (2-9)-(2-11). 
(2) Assemble the “reduced” system, Eq. (2-13), and solve for the cFH and li”. 
(3) For each processor, compute the final solution by Eq. (2-12). 
This algorithm is our main result. The remainder of this paper discusses practical 
details of reducing operation count, memory requirement, and communication 
time. 

3. Computing the particular and homogeneous solutions 

The three solutions x:, xFH, and xp”” are obtained by solving Eqs. (2-9)-(2-11). 
The method here is based on LU decomposition, which is usually the most 
efficient. With vector processors, cyclic reduction may be more efficient [4], but 
only if just one system need be solved. Many applications require solution of 
multiple tridiagonal systems, for which the most efficient use of vectorization is to 
use LU decomposition and vectorize across the multiple systems. This is discussed 
further in Section 6. 

Equations (2-9)-(2-11) represent three M XM tridiagonal systems. If these 
systems were independent, then solution via LU decomposition would require 
3 X 8M = 24M binary floating point operations. However, exploiting overlapping 
calculations and elements with value 0, gives the following algorithm, which can be 
implemented with 13M binary floating point operations. 

Forward elimination: 

Cl 'i 
to, = - 

bl wi= bi - aiwi_l 
i=2,3 M ) . . . 

r; - a;y;_ 1 

yi= bi-aiwi_I 
i=2,3,...M 

Back substitution: 

Gi=YM R R 
Xi =yi-WiXi.1 i=M-1, M-2,...1 

LH= _ 
XM wM i 

x&H= -Ci+.Xi”+‘: i=M-1, M-2,...1 

a.44 UH, _ 
WM 

b, 
&=f = ai 

’ b; - c&!~~ 
i=M-1, M-2,...1 

Forward substitution: 

UH, _ UH 
Xl Wl I 

xUH = --~~~xiuf: i = 2, 3,. . . M, 
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where the processor index p is implicitly present on all variables, and we have 
assumed that end elements a, and cM are written in the appropriate positions in 
the a and c arrays. This algorithm is similar to the usual LU decomposition 
algorithm, (see, e.g. 161 or [3]), but with an extra forward substitution. The sample 
FORTRAN segment in the Appendix implements this with no temporary storage 
arrays. 

If the tridiagonal matrix is constant, and only the right hand side changes from 
one matrix problem to the next, then the vectors wi, l/(bi - aiwi), x,vH, and xLH 
can be precalculated and stored. The computation then requires only 5M binary 
floating point operations. 

4. Construction and solution of the reduced matrix 

Once each processor has determined x;, xFH, and xkH, it is time to construct 
and solve the reduced system of Eq. (2-13). This section describes an algorithm for 
this. 

We assume that the following subroutines are available for inter-processor 
communication: 
0 Send(ToPid,data,n): When this is invoked by processor FromPid, the 

array da t a of length n is sent to processor TOP i d. It is assumed that Send is 

nonblocking, in that the processor does not wait for the data to be received by 
To P i d before continuing. 

0 Receive(FromPid,data,nl: To complete data transmission, Receive is 

invoked by processor TOP i d. Upon execution, the array sent by processor 
F r omP i d is stored in the array data array of length n, It is assumed that 
Re c e i ve is blocking, in that the processor waits for the data to be received 
before continuing. 

Opening interprocessor communications is generally the most time-consuming step 
in the entire tridiagonal solution process, so it is important to minimize this. The 
following algorithm consumes a time of T = (log, P)t, in opening communication 
channels (where t, is the time to open one channel). 
(1) Each processor writes whatever data it has that is relevant to Eq. (2-13) in the 

array OutData. 

(2) The 0 u t Da t a arrays from each processor are concatenated as follows (Fig. 1): 
(a) Each processor p sends its 0 u t D a t a array to processor p - 1 (mod P) + 1, 

and receives a corresponding array from processor p + 1 (mod P) + 1, as 
depicted in Fig. l(a). The incoming array is concatenated to the end of 
OutData. 

(b) At the ith step, repeat the first step, except sending to processor p - 2’-’ 
(mod P) + 1, and receiving from processor p + 2’-’ (mod P) + 1 (Fig. 
lb,c), for i = 1, 2,. . . After log, P iterations (or the next higher integer), 
each processor has the contents of the reduced matrix in the 0 u t Da t a 

array. 
(3) Each processor rearranges the contents of its 0 u t D a t a array into the reduced 

tridiagonal system, and then solves. (Each processor solves the same reduced 
system.) 
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OutData 
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Fig. I. Illustration of the method used to pass reduced matrix data between processors, with P = 5 for 
definiteness. 
step 1: In the first iteration, each processor p sends data to processor (p - 1) (mod P)+ 1, receives data 
from processor (p + 1) (mod P) + 1, and concatenates the data arrays. The result is that each Out Da t a 
array contains the data from the processors shown, in order shown. The remaining elements of the 
Out Da t a array are not used. 
step 2: Each processor sends its Out Data array to processor (p - 2) (mod P)+ 1, receives data from 
processor (p + 2) (mod P) + 1, again concatenating. 
step 3: In the ith iteration (here third and final), each processor sends its Out Data array to processor 
(p -2’-‘) (mod P)+ 1, receives data from processor (p +2’-‘) (mod PI+ 1, again concatenating. The 
final out Data array contains all the information of the reduced matrix, ordered cyclically beginning 
with the contributions of the pth processor. The information beyond the element Out D a t a (8 P 1 is not 

used. 

This communication is dense (every processor communicates in every step), and 
periodic, so that upon completion every processor contains the fully concatenated 
0 u t Da t a array).A sample program segment is provided in the Appendix. 

If the elements of the tridiagonal matrix are constants, then the reduced matrix 
can be precalculated and only the reduced right hand side needs to be assembled. 
In this case, the above routine could be rewritten to pass l/4 as many real 
numbers. This does not represent a very large time savings, since generally it is the 
channel openings that is the most costly, not the amount of data passage. 

At this point, the necessary components to Eq. (2-12) are stored in each 
processor. All that is left is the trivial task of picking out the correct coefficients 
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and constructing the final solution. A sample program segment is provided in the 
Appendix. 

5. Performance 

In this section we discuss execution time of this algorithm, and present scaling 
tests made with a working code, 

The time consumption for this routine is as follows. 
(1) 

(2) 

(3) 

(4) 

To calculate the three roots xR, xuH, and xLH requires 13M binary floating 
point operations by each processor, done in parallel. 
To assemble the reduced matrix in each processor requires log, P steps where 
interprocessor communications are opened, and the ith opening passes 8 x 2’-’ 
real numbers. 
Solution of the reduced system through LU decomposition requires 8(2P - 2) 
binary floating point operations by each processor, done in parallel. 
Calculation of the final solution requires 4M binary floating point operations 
by each processor, done in parallel. 

If t, is the time of one binary floating point operation, t, is the time required to 
open a communication channel (latency), and t, is the time to pass one real 
number once communication is opened, then the time to execute this parallel 
routine is given by (optimally) 

Tp= 13Mt,+(log, P)t,+8(P- l)t,+8(2P-2)t,+4Mt, 

= (17M + 16P)t, + (log, P)tC + 8Pt,, (5-l) 

for P B- 1. For cases of present interest, Tp is dominated by (log, P)t, and 17Mt,. 
The parallel efficiency is defined by l p = TJPT,, where T, is the execution time 
of a serial code which solves by LU decomposition. Since serial LU decomposition 
solve an N X N system in a time T, = 8 Nt,, then the predicted parallel efficiency is 

8 

” = 17 + 16P2/N + (log, P) PtJNt, + 8P2t,/Ntb * 
(5-2) 

To test these claims empirically, the execution times of working serial and 
parallel codes were measured, and l p was calculated both through its definition 
and through Eq. (5-2). Fig. 2 shows E,, as a function of P for two cases, N = 200 
and N = 50,000. We conclude from Fig. 2 that Eq. (5-2) (smooth lines) is reason- 
ably accurate, both for the theoretical maximum efficiency (47%, acheived for 
small P and large N) and for the scaling with large P. 

These timings were made on the BBN TC2000 MIMD machine at Lawrence 
Livermore National Laboratory. This machine has 128 MS8100 RISC processors, 
connected by a butterfly-switch network. To calculate the predictions of Eq. (5-l), 
the times t,, t,, and tb were obtained as follows. We chose t, = 750 psec, based on 
the average time of a send/receive pair measured in our code. Based on communi- 
cations measurements for the BBN [51, we chose the passage time of a single 64-bit 
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Fig. 2. Results of scaling runs, comparing the parallel time with serial LU decomposition time. Here, ep 
is the parallel efficiency and P is the number of processors. The smooth lines represent Eq. (52), and 
the points are empirical results. The upper line and diamonds use N = 200, and the lower line and 
squares use N = 50,000. 

real number as tp = 9 psec. [In comparison, the peak bandwidth specification for 
the machine of 38 MB/set per path [21 would yield tp = 0.2 psec. Using this value 
instead of 9 psec makes no visible differences in Fig. 2.1 We chose t, = 1.4 psec, 
based on our measured timing of 0.00218 set for the serial algorithm on the 
N = 200 case. (In comparison, the peak performance specification of 10 MFLOPS 
for the M88100 on 64-bit numbers would yield t, = 0.1 psec. Using this value 
instead of 1.4 psec would yield curves which fall well below our measured parallel 
efficiency values.) All measurements were made with 64-bit floating point arith- 
metic. 

It is difficult to make a comprehensive comparison with all other parallel 
tridiagonal solvers, but we can compare our speed with a popular algorithm by H. 
Wang [7]. That routine requires 2P - 2 steps where communications are opened 
(compared with log, P such steps here), and 21M binary operations per processor 
(compared with 17M here). We have not performed empirical comparisons, but 
since both dominant processes have lower counts, it seems reasonable to believe 
the present algorithm is generally faster. 

6. Discussion and conclusions 

In this paper, we have described a numerical routine for solving tridiagonal 
matrices using a multiple instruction stream/multiple data stream (MIMD) paral- 
lel computer with distributed memory. The routine has the advantage over existing 
methods in that the initial factorization step is not used, leading to a simpler, and 
probably faster, routine. 
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Fig. 3. Schematic representation of a typical set of tridiagonal systems that might arise in a two 
dimensional grid. For each grid line in y, there is a tridiagonal system to solve. 

Stability of this algorithm is similar to that of serial LU decomposition of a 
tridiagonal matrix. If the Li are unstable to LU decomposition, then pivoting could 
be used. If the Li are singular, then LU decomposition fails and some alternative 
should be devised. If the large matrix A is diagonally dominant, (I Ai I > 
1 Bi I + 1 Ci 1) then so too are the Li. If the reduced system is unstable to LU 
decomposition, this can be replaced by a different solution scheme, with little loss 
of overall speed (if P -=c M). 

This routine is generalizable from tridiagonal to higher systems. For example, in 
a 5diagonal system, there would be four homogeneous solutions, each with an 
undetermined coefficient. The coefficients of the homogeneous solutions would be 
determined by a reduced system analogous to Eq. (2-13), except with O(4Pl 
equations, not 2P - 2. 

We briefly discuss implementation of this routine in a problem where there are 
many tridiagonal systems to solve. This situation arises in many of the forseeable 
applications of parallel tridiagonal solvers, such as solving differential equations by 
the alternating-direction implicit method (ADI) [6] on a multidimensional grid. For 
definiteness we consider the two dimensional grid depicted in Fig. 3. For each grid 
line in y, there is a tridiagonal system to solve, with the index running in the x 



N. Mattor et al. /Parallel Computing 21 (1995) 1749-l 782 1719 

direction. The routine described in this paper is well suited for this problem, which 
may be handled efficiently as follows. 
(1) 

(2) 

(3) 

(4) 

The grid is divided into block subdomains in x and y. Each processor is 
assigned one subdomain, with the submatrices and sub-right hand sides stored 
locally. If the number of y grid lines in each subdomain is L, and the number 
of x grid points is M, then each processor has L systems with it4 equations 
each. 
Each processor finds xR, xuH, and xLH, for each y grid line in its subdomain, 
by the algorithm described in Section 3. 
To assemble the reduced systems, each family of processors colinear in x 
passes the reduced system data for all y grid lines in the subdomain, by the 
algorithm described in Section 4. (Note that the number of communication 
openings can be minimized by passing all L reduced systems together.) After 
this step is complete, each processor contains L reduced systems, one for each 
y grid line in its subdomain. 
Each processor solves the L reduced systems, then assembles the final solu- 
tion, as described at the end of Section 4. 

This method has several desirable features. First, the time spent opening interpro- 
cessor communications is P, log, P, (where P, is the number of processors 
colinear in x), which is not greater than for solving a single system with P, 
processors. Insofar as this is the most time consuming step, multidimensional 
efficiency is quite good for this algorithm. Second, if the processors are vector 
processors, the calculations for the y grid lines (steps 1 and 3 above) can be carried 
out in parallel. This would seem to be a more efficient use of vectorization than 
replacing the LU decomposition with cyclic reduction, since the former involves 
fewer operations. Third, the algorithm is easily converted to a system where the 
roles of x and y are reversed; all that needs to be done is exchange indices. 
Complicated rearrangement of subdomains is not necessary. 
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Appendix 

This Appendix gives sample FORTRAN routines for the algorithms in Sections 
3 and 4. This makes the algorithms more concrete, and also gives some time and 
memory saving steps not mentioned above. 

The particular and homogeneous solutions for each submatrix are computed by 
the algorithm in Section 3. This is to be run by each processor, and it is assumed 
that the arrays af . . . a$ 6;. . . bi, cf.. . clt;, and rf . . . r,& are stored locally in 
each processor, with the index p omitted. No temporary arrays are needed; all 
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intermediate storage is done in the final solution arrays, x r, x u h, and x 1 h (each 
with M elements). 
!forward elimination: 

xuh(l)=c(l)/b(l) 

xlh(l)=r(l)/b(l) 

do i=2,M,l 

denom=b(i) - c(i)*xuh(i-I) 

if (denom.eq.0) pause !LU decomposition fails 

xuh(i>=c(i)/denom 

xlh(i)=(r(i) - a(i)*xlh(i-l))/denom 

end do 

!back substitution: 

xr(M)=xlh(M) 

xLh(M)=-xuh(M) 

xuh(M)=a(M)/b(M) 

do i=M-1,1,-l 

xr(i)=xLh(i)-xuh(i)*xrO 

xlh(i)= -xuh(i)*xlh(i+'i) 

denom=b(i)-c(i)*xuh(i+l) 

if (denom.eq.0) pause !LU decomposition fails 

xuh(i)=-a(i)/denom 

end do 

!foIward substitution: 

xuh(l)=-xuh(l) 

do i=2,M,l 

xuh(i)=-xuh(i)*xuh(i-1) 

end do 

Section 4 describes how the reduced matrix is written to each processor. A 
sample routine follows, to be executed by each processor. We assume the proces- 
sors are numbered p = 1, 2,. . . , P. The integer pi d is the local processor number 
(called p in the mathematical parts of this paper), and the integer n p r o c s is the 
code name for P. The integer 1 og ” ” 2 P is the smallest integer greater than or 
equal to log,(P). The real array Out Da t a has 8 X 2L"g""2p elements. The subrou- 
tine tridiagonal (a,b,c,r,sol,n) (not given here) is a serial subroutine 
that returns the solution so L for the tridiagonal system with subdiagonal a, 
diagonal b, superdiagonal c, and right hand side r, all of length n. 

!write contributions of current processor into Out Data : 

OutData(l1. 

Outdata(2)=xuh(l) 

OutdataC3)=xlh(l) 

Outdata(4)=-xr(l) 



N. Mattor et al. /Parallel Computing 21 (I 995) 1769-l 782 1781 

Outdata(S)=xuh(M) 

Outdata(6)=xlh(M) 

OutData(7)=-I. 

OutData(8)=-xr(M) 

!concatenate all the Out D a t a arrays: 

Log2P=log(nprocs)/lo9(2) 

if (2**log2P.lt.nprocs) log2P=Log2P+l 

do i=O, Log2P-I,1 

nxfer=8*(2**i) 

ToProc=l+mod(pid-2**i+2*nprocs,nprocs,nprocsI 

FromProc=l+mod(pid+2**i,nprocs) 

call Send(ToProc,OutData,nxfer) 

call Receive(FromProc,OutData(nxfer+l),nxfer) 

end do 

!Put o u t Da t a into reduced tridiagonal form: 

nsig = 8 * nprocs !no. of significant entries in 0 u t Da t a 

ifirst = 8 * (nprocs-pid) + 5 !index ‘of a(l) in out Da t a 

do i=1,2*nprocs-2,l 

ibase=mod(ifirst+4*(i-l),nsig) 

reduca(i)=OutData(ibase) 

reducb(i)=OutData(ibase+l) 

reducc(i)=OutData(ibase+2) 

reducr(i)=OutData(ibase+3) 

end do 

!solve reduced system: 

call tridiagonal(reduca,reducb,reducc,reducr,coeffs, 

2*nprocs-2) 

Once the reduced matrix is solved, then the solution can be assembled in each 
processor as follows. 

!pick out the appropriate elements of c oe f f s : 

if (pid.ne.1) then 

uhcoeff=coeffs(2*pid-2) 

else 

uhcoeff=O. 

end if 

if (pid.ne.npr0c.s) then 

Lhcoeff=coeffs(2*pid-I) 

else 

lhcoeff=O. 

end if 
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!compute the final solution: 

do i=l,M,l 
x(i)=xr(i)+uhcoeff*xuho+lhcoeff*xlhO 

end do 
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