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Abstract

Data from several current tokamak experiments indicate that the equilibrium poloidal
velocity field can become strongly sheared accompanying the transition from L-mode to H-
mode, i.e., improved, confinement and that fluctuation levels are reduced. Linear theory
suggests that velocity shear can stabilize ion-temperature-gradient (ITG) modes when the
frequency shift experienced by the mode due to the radial dependence of the Doppler shift
is comparable to the growth rate. To confirm the predictions of linear theory and to explore
nonlinear issues, e.g., self-generated shear flows, saturation amplitudes and the
concomitant energy transport levels, two and three-dimensional gyrokinetic simulations of
ITG modes have been performed. The simulations were done with and without magnetic
shear in a slab‘ configuration using the partially linearized (8f) algorithm to reduce statistical
noise. The simulations confirm theoretical analyses of the stabilizing and destabilizing
effects of imposed poloidal velocity fields. The ion energy transport levels at saturation
follow the trends of the linear growth rates and the mixing length estimates. The
gyrokinetic simulations are in qualitative agreement with the results of gyrofluid
simulations, and exhibit saturation amplitudes and energy transport similar to those in
gyrofluid simulations. These transport levels are generally lower than those typically
reported in the laboratory experiments, much of which discrepancy is reduced when

toroidal driving terms are included.

PACS numbers: 52.35.P, 52.35.R, 52.65






I. INTRODUCTION

Experiments on several large and small tokamaks!-7 suggest a correlation between
the onset of improved confinement (L-H transition) and the emergence of strong shear in
the poloidal rotation just inside the edge of the plasma. Theoretical models for the
development of shear in the poloidal velocity and its relation to improved confinement have
been presented.8-10 Other theoretical papers have addressed the possible stabilizing effect
that a strongly sheared poloidal velocity field might have on the drift-type modes that
produce turbulent transport.11-16 These analyses suggest that strong poloidal velocity
shear causes improved confinement via linear stabilization of drift-type modes. Nonlinear
fluid and gyrofluid simulations of ion-temperature-gradient (ITG) turbulence by
Hamaguchi and Horton!4 and by Waltz, et al.1> demonstrate velocity-shear stabilization.
In contrast, Carreras, et al. have analysed a model that indicates that nonlinear effects defeat
the linear stabilization effect of externally imposed poloidal velocity shear on the dissipative
trapped electron mode for a velocity that varies linearly in space.1? However, Ref. 17 also
points out that self-consistent nonlinearly generated flows should reduce turbulence levels.

This paper presents the first reported gyrokinetic simulation18 of the effects of
strong poloidal velocity shear on ITG modes. Earlier gyrokinetic simulation studies of ITG
modes did not examine the effects of velocity shear and were undertaken with a fully
nonlinear gyrokinetic model in Refs. 19 and 20. We take an externally imposed ExB
velocity field with either linear or parabolic spatial variation and also with a self-consistent
model of flow, and follow the linear growth and nonlinear saturation of ITG modes.
Electrons are modeled with a linear adiabatic fluid response.18 The ions are modeled as a
nonlinear gyrokinetic species using the partially linearized (8f) algorithm to reduce
statistical noise effects.2122 Kotschenreuther has used a 8f code to study ITG modes, but
did not report any study addressing velocity shear effects.22 Our results generally concur

with linear theory13.14 and the fluid simulations of ITG turbulencel4.15 indicating that



strong poloidal velocity shear has a stabilizing influence on turbulence, improves
confinement, and could be a contributing mechanism to the L-H transition.

The paper is organized as follows. In Sec. II the simulation model is described,
and some convergence tests are presented. Simulation results for ITG modes are given in
Sec. III. Externally imposed velocity shear with linear variation in x 1is found to be
destabilizing for weak shear and eventually stabilizing when Vo“Lg/cs >2, independent of
the sign of Vy’. Here Vy'=dVg/dx , where VE is the y-component of the imposed ExB
drift velocity, Lg is the magnetic shear length, and cg is the ion sound speed. When strong
velocity shear is switched on while the ITG turbulence is growing, there is a strong
stabilizing effect. Nonlinear effects do not appear to defeat the stabilizing effects of the
velocity shear. This agrees with the gyrofluid simulation results of Waltz, et al.15 The
effects of velocity shear with a parabolic spatial dependence are found to be weak for the
parameters of our simulations. The inclusion of self-generated ion flows in the simulations
leads to the emergence of strong self-generated shear flows that are stabilizing. Some
discussion of the energy transport observed in our simulations is given in Sec. IV along
with its scaling to experiments and a comparison to gyrofluid simulations. The peak
energy transport rates observed in our simulations track y/k?2 values using the wavenumber
of the fastest growing mode and are similar in magnitude to the transport rates observed in

gyrofluid simulations.15

II. Gyrokinetic Simulation Model

The electrostatic gyrokinetic particle simulation model has been described elsewhere
in detail.18 Here we use a variant of that model in which the so-called parallel nonlinearity
has been omitted to make a partially linearized or 8f algorithm.2122 By this we mean that
where (q/m)E,3f/3v, appears in the Vlasov equation, 3f/dvz is computed analytically just
from the unperturbed, Maxwellian distribution function. This allows one to represent only

the perturbation of the distribution function from a Maxwellian with particles, and thus



reduce the statistical noise by a large factor because the perturbations considered are small.
To implement this, the ions are advanced along their ExB trajectories and ballistically
stream parallel to the magnetic field. The magnetic field is allowed to be sheared in the y-z
plane, i.e., its y component has x dependence. The ExB drift is the gyroaveraged drift as
approximated by a four-point average around the cyclotron orbit. The approximately
gyroaveraged perturbed ion charge density is accumulated on a spatial grid, and the
gyrokinetic Poisson equation is solved with the electron response modeled as adiabatic.19

Equilibrium density and temperature variations in x are modeled with a linearized,
multi-scale treatment that leads to a source term for the 8f particle weights.2! The ky=0
components of the perturbed potential are suppressed. This multi-scale treatment is strictly
valid only in the limit that the equilibrium scale lengths are long compared to the
wavelengths of the waves simulated. Thus, we can only simulate legitimately a small
subdomain of the plasma cross-section with this assumption invoked. The use of the
partially linearized multi-scale model in conjunction with the &f approximation and the
neglect of the parallel nonlinearity provides the additional advantage that there is an exact
scaling of the model with respect to the scale lengths of the equilibrium density and
temperature profile. The simulation results can be scaled to any strength of the equilibrium
density or temperature gradient.23

The adiabatic electron response model has a particular feature of interest.
Nonlinear, self-generated flows in the ions can have important components with ky=0 and
k,=0, i.e., the parallel wavenumber k| =0. This component of the electric potential (for
kx#0) is retained in the simulation when we wish to include self-generated ion flows;
otherwise, the ky=k;=0 Fourier components of the electric potential are suppressed. The
linear electron response to the ky=k,=0 Fourier mode is zero, and the nonlinear adiabatic

electron response is negligible in the df regime. There could be a nonlinear, nonadiabatic

electron response that could be significant in some cases, but it would require a wholly



different electron model.  For ky#0 or kz#0, so that k|| #0, the usual linear adiabatic

electron model is applicable.19

The simulation model had periodic boundary conditions in the y and z dimensions.
In the x dimension, the simulation box was extended to twice its length (2Ly); and periodic
boundary condtions were applied on the extended domain. Particles leaving the physical
domain (x=0 and x=L,) were reflected back into the domain, and the self-consistent electric
potential was forced to have nulls in x at the boundaries of the physical domain. The
charge density was reflected with odd symmetry at x=Lyx. To model an imposed
equilibrium ExB velocity field, an applied potential was added to the self-consistent
potential before computing the total electric field. The applied potential had either parabolic
or cubic variation in x so that the ExB velocity had either constant first or second spatial
derivative. To be consistent with being periodic on the extended domain in x , the applied
potential had a jump at x=(3/2)Ly; but no particles could get to this point.

With the boundary conditions described and no sources of particles and energy,
nonlinear effects can relax density and temperature gradients or gradients of the ion
distribution in velocity space as the simulation evolves. In consequence, these initial-value
simulations do not give rise to steady-state turbulent transport. The plasma is initialized to
be unstable to ITG modes. Following the exponential growth of unstable ITG modes,
nonlinear effects emerge, and saturation is observed. The transport of thermal energy
grows and saturates along with the electric field fluctuations; it then relaxes the source of
free energy driving the instability, although the average temperature gradient across the
system is not observed to relax very much for the parameters of our simulations and
density-gradient relaxation does not occur. After the thermal transport saturates, it subsides
to a much smaller amplitude because there are no real sources to maintain the necessary
gradients in configuration and velocity spaces.

We have undertaken two and three-dimensional, sheared-slab, 8f gyrokinetic

simulations of ITG modes. We have tested our gyrokinetic codes by conducting



simulations of ITG modes using the same parameters as those whose results have been
reported by Lee and Tang,1% and by comparing linear growth rates and mode frequencies
observed in the simulations to those computed either with a linear dispersion code similar to
the shooting code used by Staebler and Dominguez!3 or with the integral-equation, linear-
disperson code developed by Linsker.2# Because the Linsker code makes no expansion for
small kypj (pi is the Larmor radius of a thermal ion), it is more applicable than the
shooting code. When we focussed attention on just the linear regime of instability and
initialized the &f code at very small initial amplitudes with an ordered filling of phase space,
we obtained excellent agreement between our simulation results and those of the Linsker
code for the mode frequencies and growth rates. The shooting code generally gave less
accurate estimates for the real part of the mode frequencies than for the growth rates when
compared to our gyrokinetic results and to the results of the Linsker code: for the
fundamental eigenmode the gyrokinetic and the Linsker codes exhibited real frequencies
that were up to ~50% larger in magnitude than those of the shooting code for
0.4<kypi<1.0.

Two related computational issues received significant attention in the course of this
effort: statistical resolution and spatial filtering. All particle simulations are subject to
statistical resolution constraints. Even with the increased leverage of the 8f algorithm,
statistical requirements can be demanding. As spatial resolution is increased, one must
increase the total number of particles in order to insure that there are adequate numbers of
particles per relevant wavelength to resolve the charge density. Because finite differencing
produces a significant distortion of the fundamental equations at the shortest wavelengths
admitted by the simulation, almost all particle simulations resort to spatial filtering or
smoothing at short wavelengths. If relatively fewer modes are retained in the simulation
because the short wavelength modes are heavily attenuated, then fewer particles are

required to resolve the charge density.



To establish confidence in our methods, we performed multiple simulations holding
all physical and computational parameters fixed except for the number of particles per cell,
which we increased from simulation to simulation until the physical results converged (Fig.
1). This was a demonstration that we had adequate statistical resolution to insure that the
physical signal adequately exceeded the noise throughout the simulation. For our three-
dimensional ITG &f simulations with exp(-k6af) filtering applied to the charge density in k-
space, we found that using 230 particles per cell was adequate for a=p;. The number of
particles cited here is conservative. If one wishes to resolve merely the maximum electric
field amplitudes and the cross-field thermal fluxes, and is somewhat indifferent to the
values of these quantities in the relaxed state following saturation, then many fewer
particles are required for statistical resolution (~5-10 particles per cell). We also varied the
magnitude of the wavenumber for which smaller wavenumbers were relatively unattenuated
and larger ones were significantly damped, and varied the power of ka appearing in the
exponential smoothing factor (Fig. 2). In this manner we determined whether enough of
the physically relevant wavenumber spectrum was being retained so that the physics results
were not being distorted significantly by spatial filtering. We settled on a spatial filtering
factor exp(-k6a®) with axy=ay=a,~p; to strongly attenuate short-wavelength modes kp;>1

and to leave the long wavelength modes kp;<1 unattenuated.

III. SIMULATIONS OF ITG MODES WITH VELOCITY SHEAR

In this section, we present the results of our gyrokinetic simulations of the effects
of velocity shear on ITG turbulence. It is useful to consider the following simple heuristic
arguments. The spread in local Doppler shifts in the mode frequency over the width Ax of
the mode is approximately kyVoAx for a linear velocity shear profile and kyVo""Ax2/2 for
a parabolic profile with V'=0 for a value of x halfway across the physical domain, where
By=0 in the magnetically sheared cases. When the spread in Doppler shifts becomes

comparable to the mode growth rate, one expects significant modification of both the linear



growth rates and the saturated turbulence. For strongly unstable ITG modes, the growth

rates of the most unstable modes are comparable to the parallel streaming frequency kcs,
where the effective parallel wavenumber is k~kyAx/Ls in a magnetically sheared plasma.

Equating the spread of Doppler shifts to the mode frequency, one obtains

VoLgcs~1 (1)
for a linear variation in the ExB velocity profile and
Vo piLs/cs ~1 2)

for a parabolic ExB velocity profile and a linear mode width scaling as Ax~p;j.
Calculations of the linear stability of ITG modes in the presence of velocity
shear13.14.25 agree qualitatively with Eqs.(1) and (2), and provide quantitative details. The
linear theory of Staebler and Dominguez!3 indicates that, for a linear velocity-shear profile
and a specific choice of plasma parameters motivated by the shear layer in the DIII-D
experiment, the effect of increasing velocity shear with an adiabatic electron response is to
leave the linear growth rates essentially unchanged for weak velocity shear Vo Lg/cs<1,
then to decrease the linear growth rates steadily for more shear, and to stabilize the mode
for Vo'Lg/cg > 2-3. For a fully kinetic electron response, there is a weak destabilization of
the mode as Vg 'Lg/cg increases from zero to unity in value, after which the growth rate
decreases and the mode is stabilized for slightly higher values of VoLg/cs than in the case
of adiabatic electrons. The Doppler shift causes the real part of the frequency to steadily
decrease in magnitude with increasing Vo Lg/cs until the mode frequency passes through
zero. The eigenmode structure exhibits a shift off the mode rational surface where k| =0,
which increases with increasing velocity shear. The eigenmode equation is invariant under
the transformation x—-x and Vy"—-Vjy’, so that the eigenvalues are insensitive to the sign
of Vo’. Negative values of V*” are stabilizing, while Vy“">0 is weakly destabilizing until

very large positive values of Vy*” (V" 'piLs/cs>3) render the mode stable. The real part of

the frequency becomes less negative with increasing Vo™



A. Simulations with externally imposed shear flows

To investigate the effects of velocity shear on the ITG instability, we performed two
and three-dimensional gyrokinetic simulations. Our parameter choices were motivated
generally by those appropriate to the DHf—D shear layer,3:13 but are not intended to exactly
match DIII-D. Our two-dimensional simulations had a sheared magnetic field given by
B;=B¢ and By=Bg(x-x¢)/Ls with a single mode-rational surface bisecting the x-y domain at
Xo=16pj. With no magnetic shear, the magnetic field was tilted so that By=6Bg and only
modes with k;=0 were kept. We performed two-dimensional simulations with
Ni=Ln/LT=00, Ly/L1=33.3, 1=Te/Ti=1, Lx=Ly=32pj, and a series of Vo'L¢/cg values,
where Tk j are the electron and ion temperatures, L, and Lt are the density and temperature
gradient scale lengths. When linear growth rates were compared to the predictions of a
shooting code, the results disagreed by 20-50% for kyp;=0.4 . For a set of simulations
with Vo'Lg/cs=0, 1, 2, and 4, we observed some weak destabilization when we increased
the relative velocity shear from zero to Vo 'Lg/cs=1, little change going to 2, and a strongly
stabilizing effect for a value of 4. The normalized averaged ion thermal flux in x from these
simulations is plotted as a function of Vo 'Lg/cg in Fig. 3.

The magnetic shear in the velocity shear layer may be quite weak relative to the
plasma inhomogeneities near the edge of the tokamak. What effect does velocity shear
have on the ITG instability when there is no magnetic shear? With n;i=2, t=1/2,
8LT/ps=0.075, 6<<1, Lyx=Ly=64ps, we compare simulation results for the spatially
averaged normalized ion thermal flux with Vo Lt/cs= 0 and 0.02 in Fig. 4. We observe
that strong velocity shear is again stabilizing even when there is no magnetic shear, an
observation previously made by Hamaguchi and Horton. 14

Our magnetically sheared slab simulations in three dimensions have many mode
rational surfaces. The mode rational surfaces become more closely spaced for the modes
with larger wavenumbers ky, and the nonlinear interaction between neighboring modes can

occur more readily. This circumstance may alter the effects of velocity shear on drift-type



instabilities.17 In our three-dimensional sheared-slab simulations we used parameters
Lx=Ly=32pj, L,=1600p;, with the grid spacing in z elongated by a factor of 100 over the
x-y grid spacing, nj=2°, Ly/L1=30, L¢/pi=1000, t=1, and 600,000 particle ions. Phase
space was loaded with ions relatively uniformly, and the initial weights of the 8f particles
were set at a low level of 105 to allow the observation of a few decades of unstable growth
in the linear phase.

We conducted three-dimensional simulations in which Vy"Lg/cs=0, 1, 2, 3, and -3.
Self-generated ion flows were suppressed by discarding the ky=k,=0 Fourier modes of the
electric potential. The peak values of the effective potential energy (the sum of the field,
ion polarization, and adiabatic electron kinetic energies) and the normalized, spatially
averaged ion thermal flux in x increased significantly going from the VyLg/cs=0 to 1(Fig.
5). The linear theory of ITG instability due Wang et al. showed that weak velocity shear
can be destabilizing.25 This does not contradict the results of Ref. 13, which found no
significant destabilization, because the numerical calculations in Refs. 13 and 25 were
performed with different physical parameters. We have confirmed the numerical results of
Refs. 13 and have obtained results qualitatively similar to Ref. 25 with a shooting code that
solves the linear dispersion relation. The mode frequencies in our simulations decreased in
magnitude on account of the ExB Doppler shift as Vo~ was increased. The wavenumber
spectra had a relatively broad peak at wavelengths lkypjl<0.6 and lk;pil<0.004, and there
was no obvious evidence of steady coherent structures forming at saturation. With
Vo'Lg/cs=2, the Doppler shift increased to the point that the mode frequencies of the lowest
principal modes changed sign relative to the Vg'Lg/cs=0 case; and the total electrostatic
energy and the thermal flux slightly decreased from their levels for Vo Lg/cs=1 (Fig. 6).
For Vo 'Lg/cs=3, there was significant stabilization of the ITG modes: the observed growth
rates, the total electrostatic energy, and the thermal flux were much reduced over the
Vo Ls/cs=0 case. The mode frequencies were Doppler shifted to opposite signs relative to

the Vo'=0 case. With Vg'Lg/cs=-3, the detailed histories of the fluctuation spectra and
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transport differed very little from those in the Vo'Lg/cs=3 simulation. In Figure 7 we
show the time history of the spatially averaged ion thermal flux in x for a simulation in
which we switched Vo Lg/cs from 0 to 3 half way through the simulation. This result
should be compared to the time history shown in Fig. 1b for the same parameters but with
no imposed velocity shear throughout. Switching on strong velocity shear moderated the
further growth of the ITG modes and was significantly stabilizing. A similar result was
reported in a gyrofluid simulation reported in Ref. 135.

We did two simulations with Vy“” finite and V’=0 at the midplane of the simulation
in x where By=0. Results are shown in Figure 8. With Vo pils/cs =1.8, we observed no
significant shift of the ITG mode frequencies from the case of no velocity shear and a small
enhancement of the total electrostatic energy and ion thermal flux. With Vo ’p;L¢/cs=-1.8,
there was again no significant shift of the real part of the mode frequencies, but there was a
srﬁall decrease in the growth rates, while the electrostatic energy and the ion thermal flux
were not much changed from the corresponding values in the case with no velocity shear.
The weakness of the effects and the dependence on the sign of Vo of the stabilizing and
destabilizing effects agree qualitatively with the linear theory of Staebler and Dominguez.13
B. Simulations with self-generated shear flows

In order to obtain evidence on the role of self-generated sheared ion flows in the
simulations, we had to modify the simulation model. The Fourier modes of the electric
potential that are associated with self-generated nonlinear ExB flows in the y direction,
i.e., modes with kx#0 and ky=k,=0, were retained. In two dimensions k,=0, so the
condition is just ky=0. For these modes, we take the electron density response to be zero.
This amounts to neglecting the radial particle transport of the electrons, because parallel
acceleration and parallel streaming cannot produce a finite flux-surface-averaged particle
density perturbation. Also, E| =0 for these modes; so there is no linear Boltzmann
response. Nonlinear and nonadiabatic electron effects are omitted by this model. In three-

dimensional simulations with self-generated ion flows, the growth of a substantial amount

11



of self-generated sheared ion flow accompanied the growth of the ITG modes; and there
was a net reduction in the thermal diffusivity by a factor of ~3 in the peak value compared
to the case with no imposed or self-generated shear flow (see Figs. 1b and 9). From the
e¢/Te vs. x profile after saturation (Fig. 9), which is dominated by the ky=k,=0 mode , we
deduce that the self-generated flow became strongly sheared: Vg 'Lg/cgl<O(5) and
Vo "psLg/csI<O(1) depending on the x position. The magnitude of the peak self-generated
shear flow exceeded the values of imposed shear flow that we found to be strongly
stabilizing.

In order to investigate the shear-flow generation mechanism more easily and in
more detail, we perfomed two-dimensional simulations with periodic radial boundary
conditions and no magnetic shear. This choice avoids the effects of separated phase-space
resonances, to be discussed later, and prevents saturation by quasilinear flattening of the

temperature profile. A baseline simulation was made with the ky=0 mode of the electric

potential retained and with the following parameter values: 2.6x105 particles, nj= 0,
Lx=Ly=32p;, 6L1/pj=0.075, ax=ay=1.7. Additional simulations were performed in which
the parameter values and the physics contained in the model were altered from those of the
baseline. For the baseline, the ion thermal diffusivity rose to a peak value of
Ri=xi/(csps2/LT)~0.6 in gyro-reduced Bohm units, before dropping to zero. The drop
coincided with the generation of strong ExB flows, mainly in the first and second ky
modes with peak values in space of Vo'Lt/cs~0.7. This can be compared with the value of

Vo L1/cs~0.1 that was sufficient to stabilize the modes when a linear V(x) was imposed.

A check of convergence of the simulation results made with 4.9x105 particles gave quite
similar results. In another simulation with the same parameter values, but with the ky=0
mode of the electric potential controlling the self-generated flow set to zero, the normalized

diffusivity peaked at {i~2.6 and dropped to a finite steady value {;~1.6. These
simulations again confirm that the self-generated flow greatly reduces the peak thermal flux

and leads to a similar conclusion for the post-saturation flux.
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Because the ky=0 mode in two dimensions and the ky=k;=0 mode in three
dimensions are linearly stable, their generation is a nonlinear process. The nonlinearities
can be grouped into two categories:20 the polarization nonlinearities and the finite-
Larmore-radius (FLR) nonlinearities (in the absence of FLR, the ExB advection
nonlinearity is absent in a quasineutral plasma in which the electrons are adiabiatic). The
latter are distinguished by the fact that they vanish in the limit T=T¢/T;j—0. In our
simulations =1, and both nonlinearities were active.

In order to understand which of these nonlinearities is important for the flow-
generation process, two simulation runs were made with FLR terms suppressed. In the
first of these, the Larmor radii of all of the simulation ions were set to zero, while the
polarization density term in the gyrokinetic Poisson equation was retained. This procedure
removes all of the linear and nonlinear FLR terms. The parameter values were otherwise
the same as for the baseline simulation. The resulting peak flux was reduced to %;~0.2.
Again strong sheared ExB flows were generated, and the flux dropped to zero. The peak
values of the flow shear were Vo Lt/cs~0.6. The second simulation was made with the
perpendicular temperature gradient set to zero, but with standard finite ion Larmor radii.
This eliminated the FLR terms that involve fluctuations of the perpendicular temperature.
(In the collisionless limit, in which the pressure is anisotropic, the only temperature
involved in the FLR terms is the perpendicular temperature.) The total peak flux was
2:~0.14, only slightly lower than for the previous case, even though in this case the
thermal flux is entirely the flux of the parallel temperature. The modal content and the
values of the shear in the self-generated flow were almost identical to those of the first case.

We conclude that although the FLR nonlinearities may play a role in the details of
the evolution, they are not essential to the flow generation process. The final states in all of
the cases in which the self-generated flow was kept were similar. The differences in the
peak flux values could be caused by differences in linear growth rates as well as by

nonlinear effects. Unfortunately, the removal of the polarization nonlinearity is much more
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difficult in a gyrokinetic code, so we have not determined if the FLR nonlinearities alone
can result in self-generated flows. We can speculate that they should be able to since for a
quasineutral plasma with adiabiatic electrons, in the small ion-Larmor-radius limt, the FLR
nonlinear term associated with the ion density fluctuations is identical in form to the
polarization nonlinearity.26

We also conclude that externally imposed stabilizing shear flow was nor rendered
irrelevant by nonlinear effects in our simulations with the self-generated ky=k;=0
component of the shear flow suppressed in contrast to the findings of Ref. 17 for a
simplified fluid model of long wavelength dissipative drift waves. However, the reduction
in turbulence levels observed in our simulations including the self-generated shear flow

qualtitatively agrees with the prediction of Ref. 17.

IV. DISCUSSION

The simulation results presented here agree qualitatively and, at least, semi-
quantitatively with the linear stability calculations of Staebler and Dominguez,!3 and
Hamaguchi and Horton,!4 and with the nonlinear fluid calculations of Waltz et al.15 and
Hamaguchi and Horton.14 Increasing linear velocity shear is stabilizing, and the linear
theory gives fairly good guidance as to when stabilization is nearly complete. The
stabilization does not depend on the sign of Vy’, but may depend weakly on the sign of
Vo~'. We agree with the earlier fluid simulations of Hamaguchi and Horton14 that
velocity-shear stabilization of ITG modes is effective even when there is no magnetic shear.
We see no evidence of nonlinear destabilization of ITG modes defeating linear velocity-
shear stabilization. As in the gyrofluid simulations of Waltz et al.,13 when strong velocity
shear was switched on in the middle of a simulation which was unstable to ITG modes, the
amplitude of the turbulent fluctuations decreased and the cross-field ion thermal transport
decreased dramatically. When self-generated flows are admitted in the simulations, they

appear to have an important stabilizing effect.
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To put these gyrokinetic simulation results into a context where they may be more
casily compared to other calculations and to experimental values, we consider the intrinsic
scaling of this model. From a straightforward scaling theory,2? one can deduce that the ion
energy diffusivity y; for ITG turbulence scales as27

Xi = (cs psZ/Lp) f((1+n)Ty/Te, Lo/Ls) , (3)
where f is some additional function of the given dimensionless factors that cannot be
determined from the scaling arguments. This scaling is exact for the multi-scale 8f
gyrokinetic model. One recognizes the gyro-reduced Bohm scaling in the leading
coefficient on the right side of Eq.(3). The x-directed, normalized ion energy flux Qy in
our simulations is related to the true ion thermal flux by Qx=qx/(csTj). The ion energy
diffusivity is related to the divergence of the heat flux by %;dTi/dx=qyx, from which follows
that Xi~Lt qx/Ti~csL Qx and

%i = (LTLn/ps?) Qx (csps?/Ln) - 4)
Thus, Qi=(LTLn/ps2) Qy is the ion diffusivity in gyro-reduced Bohm units and allows us
to translate the simulation data into a form useful for comparisons. In the limit L=cc and
L #0 that corresponds to most of the ITG simulations described here, the L, factors that
appear in Eqs.(3) and (4) should be replaced by LTTe/T;.

Here we cdmparc our simulation results for §; to the results of other simulations
and to those inferred from experiments. These comparisons collect data from sc;'eral
sources in which the physical parameters, the numerical models, the boundary conditions,
and parameters vary. Furthermore, caution should be exercised in making comparisons
between the peak transport rates in our initial-value simulations and the steady-state
transport rates measured in some other simulation models and inferred from experimental
data. To the extent that the initial conditions in our simulations, both the temperature and
density gradients and the ion distribution function, are representative of the steady-state

plasmas that we are trying to model and given that the peak transport rates in our
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simulations occur before there has been much relaxation of the initial conditions, then the
comparisons are physically meaningful.

Our two-dimensional, magnetically sheared simulations exhibited peak values of
R:<0.02 (x; scaled to cgps2/L). Our three-dimensional simulations yielded 2i~0.1 peak
values. Lee and Tangl9 reported peak values &;~0.1 and asymptotic values §;~0(0.01) for
1;=4, a relatively coarse 16x16 grid, 64 particles per cell, a tilted unsheared magnetic field,
a small system in which coherent nonlinear structures were observed, and fully nonlinear
simulation (no &f approximation and retention of the parallel nonlinearity). Our two-
dimensional simulations with no magnetic shear had larger system sizes and were more
turbulent than those in Ref. 19. We used ;=2 and a more unstable value of 6L1/ps than
those used in Ref. 19. The resulting peak and asymptotic thermal diffusivities, in the
absence of self-generated flows, were of order Ri~2. When self-generated flows were
included, the peak values were lower, although still much higher than those reported
elsewhere, while at late time the flux dropped to zero. In our tests of convergence with
respect to particle number, we found that for particle numbers less than the converged
values, the peak flux was always lower than the converged value, and a finite time-
asymptotic flux was present.

In three-dimensional, fully nonlinear gyrokinetic sheared-slab simulations of a
larger system with better grid resolution, but only 4 particles per cell, Sydora et al.20
obtained spatially averaged values £i<0.01 for nj=4 and peak values £i~0.1 when
averaging over 10% of the volume in which the principal mode rational surfaces were
located. Our own experience with fully nonlinear gyrokinetic simulations in this parameter
regime makes us question whether 4 particles per cell was sufficient to give adequate
statistical convergence unless very strong spatial filtering was used. Even with &f
methods, we found that we needed more than 5 particles per cell to insure adequate

statistical resolution in our three-dimensional simulations. Kotschenreuther’s three-
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dimensional, sheared-slab, gyrokinetic 8f simulations of ITG modes with particle statistics
and grid resolution similar to ours and no applied velocity shear yielded 4;~0.05-0.1.28

The three-dimensional sheared-slab gyrofluid simulations of velocity-shear
stabilization of ITG modes undertaken by Waltz et al. 15 exhibited values of 4;~0.02-0.05
at saturation for nj=2 and Lg/L,=6-12. The three-dimensional fluid simulations of
Hamaguchi and Horton14 using a simpler fluid model surveyed a range of velocity and
magnetic shear parameters, and yielded ;~0.1-0.5 . Thus, the slab gyrofluid simulation
results for §; are similar to those obtained in 8f gyrokinetic simulations; and both are lower
than those produced by simpler fluid models. However, careful comparisons with identical
physical parameter sets and spatial numerical resolution have not been undertaken yet.
Recent simulations by Dorland, Hammett, and Hahm with a gyrofluid code including a
more detailed treatment of linear and nonlinear finite-ion-gyroradius effects indicate closer
agreement with gyrokinetic calculations.29

Typical experimental values of §; in the shear layer of DIII-D are 4;~1-10;30 and
#:~0.1-2.0 increasing with minor radius has been reported in the core of TFTR.3! One
important physical ingredient, which has been omitted in all of the aforementioned
numerical calculations and whose addition significantly increases the level of turbulence
and the concomitant transport, is toroidicity.28.32 The additional driving force for
instability contributed by toroidal curvature was shown to increase the transport by
approximately a factor of ten in Kotschenreuther’s three-dimensional gyrokinetic
simulations of ITG turbulence so that §;~0.5-1.0 were obtained.28 By just including the
gradient and curvature-B ion drift associated with toroidicity in our three-dimensional
gyrokinetic simulation, Vg=-(vy2+v,2/2)y/RQ, which gives a local model of the toroidal
driving terms with no poloidal dependence, we observed a peak value of 2i~0.6-0.8 for a
simulation with nj=%, Lg¢/LT=30, L¢/p;=1000, no velocity shear, and LT/R=0.1 (R is the
radius of curvature). With VgLg/cs=3 and otherwise the same parameters, the peak value

of the thermal diffusivity was %;~0.34; and with Vo'Lg/cs=5 the peak diffusivity decreased
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to %;~0.0006. In these simulations, the ky=k,=0 Fourier component of the self-generated
flow was suppressed.

In an effort to understand the relaxation mechanism at work in our simulations, we
have calculated the time-integrated ion thermal transport. By integrating the ion thermal
flux with respect to time through the peak of the time history to the first minimum in Q that
approaches the asymptotic relaxed value, we obtain a number that can be compared to the
amount of thermal energy transported through a distance that is required to flatten the global
temperature gradient, ~(1/2LT) (Lx/2)2 T;. We observed relatively little variation in the
time-integrated thermal transport for all of our three-dimensional sheared slab simulations,
including the simulations with toroidal drive (except for the simulation with Vo Lg/cg=5
which could be argued as being linearly stable). The effect of velocity shear when
stabilizing was to reduce the magnitude of the peak in Qy and to broaden it in time keeping
the area approximately constant (to within $25%). Overall the time-integrated thermal flux
accounted for a relaxation of approximately 30% of the ion temperature gradient. Evidently
the velocity shear influenced the thermal transport rate but did not affect the amount of free
energy that had to be relaxed. |

If only the resonant ions need to relax their contributions to the temperature
gradient, then much less than the entire ion temperature gradient needs to flatten. To make
a semi-analytical calculation of this tractable, we have made several simplifying
assumptions. We have assumed that the modes extend over a distance A~8pg on each side
of each mode rational surface in the x direction based on numerical solutions of the linear

eigenvalue problem and that both the real and imaginary parts of the mode frequencies

divided by ky are independent of ky. For a given value of v the range in x over which a
particular mode is resonant is calculated from the condition la-k v I<wExB~Im® subject to
the upper bound determined by the mode width A, where k=ky(x-x1)/Ls, X; is the location
of a particular mode rational surface, and Wgx~Ckxky¢/B is the ExB trapping frequency.

The intervals are defined by the values of ky and k, for all unstable modes. The local
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flattening of the temperature gradient is accomplished with a divergence in the heat flux as
constrained by 93T/at + 8Q/0x=0, from which follows

(/V)IQdxdt = (1/V)Jdx xAT (5)
with an integration by parts and the assumption that Q=0 at the x boundaries. Here V is
the volume. The quantity AT/V is deduced from calculating the amount of energy needed
to flatten the local temperature gradient over a distance x, to x, i.e., AT/V=
-(1/2)Jdv mv2(x-x¢) dFp/dx, where dFp/dx=-[n;"14(v2/2v;2)-3/2]Fp/LT and x, is the
center of each spatial interval; and the resonant intervals are summed over if they do not
overlap. If intervals overlap in x for particular values of vy, then the integration in x
extends over the union of the overlapping intervals. The resonant intervals in the (x,v|)
plane are shown in Fig. 10 for parameters that are representative of our simulations.
Expressions for AT;/V and AT | /V can be obtained readily. Because dFp/dx changes sign
for v2/2v;2<(3/2)-n;-! and there is more overlap of the resonant intervals at low energies
(small v in Fig. 10), there are partially cancelling contributions to the integrand on the
right side of Eq.(5). For the model calculations we performed, the expressions for AT /V,
AT /V, and the total AT/V were positive. The conclusion was that the predicted thermal
flux associated with resonant flattening was always much smaller than that required to
flatten the ovérall temperature gradient.

Because of the simplifying assumptions, we cannot expect quantitative agreement
of the relaxation model with the simulations. Depending on the detailed choice of
parameters and the assumptions, the predicted integrated thermal flux spanned an order of
magnitude 0.5-5% of that required to flatten the entire temperature gradient while the
observations in the simulations were ~30%. Some of the discrepancy is due to the fact that
ions that are considered nonresonant and non-diffusive in our model do diffuse in the
simulations. Both the cross-field fluxes of parallel and perpendicular thermal energy
predicted by the model calculation and observed in the simulations were positive. The

relaxation mechanism outlined here is relatively insensitive to velocity shear as long as the

19



ITG instability is well above threshold, which is consistent with the observation that the
time-integrated thermal flux was relatively insensitive to velocity shear. When we repeated
the three-dimensional simulation with Vo =0 and doubled the box len gthin the z direction
so as to double the density of mode rational surfaces, the electric field energy at saturation
changed very little but the peak thermal transport rate was ~50% bigger and the time-
integrated thermal transport was almost double its previous value. While we cannot extract
a simple scaling with the density of mode rational surfaces from our relaxation arguments,
the model certainly predicts that the integrated thermal transport and, hence, the
temperature-profile relaxation should increase with increasing density of mode rational
surfaces. Thus, there are several pieces of evidence to support the qualitative accuracy of
the resonant flattening relaxation model.

A final interesting observation concerning our simulations is shown in Fig. 11,
where we have plotted the measured values of Qi and Y/k2 normalized to gyro-reduced
Bohm transport cgps2/LT as functions of Vg'L¢/cs and Vo 'Lg/cs for simulations with the
ky=k,=0 Fourier component of the self-generated flow suppressed. For yand k, we have
used the observed growth rate and wavenumber of the mode of the fastest growing mode.
We note that the scaling of %; tracks the y/k2 formula. The agreement with the y/k2
estimate is interesting but not conclusively established by our data set. We do not have
sufficient mode resolution to address questions regarding the wavenumber dependence of
the y/k2 estimate. We emphasize that the peak of the mode spectrum usually occurs at
longer wavelengths in the gyrokinetic simulations than does the maximum linear growth
rate.

Comparisons of the different calculations of the level of turbulent fluctuations and
transport at saturation given by gyrokine'tic and fluid simulations continue. As the
gyrofluid models continue to mature and more powerful computers enable gyrokinetic
simulations with improved statistical and spatial resolution, the differences between the

results of gyrofluid and gyrokinetic simulations are decreasing. With the inclusion of
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toroidal effects the simulation results from both models are corresponding more closely to

experiments in many respects.
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Figure Captions

Figure 1. Normalized ion thermal flux in x expressed in terms of the ion thermal
diffusivity (see Eq.(4)) as a function of time for simulations with (a) 1 x 105, (b) 2 x 103,
and (c) 4 x 107 particle ions, and a 32x32x16 mesh.

Figure 2. Normalized ion thermal fluxes in x as a function of time and wavenumber
spectra in ky for kx=0 and k,=fundamental averaged over the last third of the simulation for
simulations with 6 x 105 particle ions and spatial smoothing given by (a) exp(-k2a2), (b)
exp(-k#a%), and (c) exp(-k6af) with a=1.

Figure 3. Normalized ion thermal flux in x as a function of time for VoLg/cs=0, 1, 2, and
4 in two-dimensional simulaions.

Figure 4. Normalized ion thermal flux in x as a function of time for Vo’L'/cs=0 and 0.02
with no magnetic shear in two-dimensional simulations.

Figure 5. Normalized ion thermal flux in x and the effective potential energy (field + ion

polarization + adiabatic electron kinetic energies) as functions of time for Vo'Lg/cs=0 and 1,
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Figure 6. Normalized ion thermal flux in x and the effective potential energy as functions
of time for Vo'Lg/cs=2 and 3. Note the differences in vertical scales from those in Fig. 5.
Figure 7. The normalized ion thermal flux in x as a function time for V¢'Lg/cg switched
from 0 to 3 half way through the simulation.

Figure 8. Normalized ion thermal flux in x as a function of time for V" “pjLs/cs=1.8 and
-1.8 with Vo =0.

Figure 9. Normalized ion thermal fluxes in x as a function of time, profiles of e¢/T vs. x,
and equi-potential contours of e¢/Te vs. x and y after saturation for three-dimensional
simulations including self-generated ion flows with externally imposed component of
sheared ExB velocity given by (a) Vo Lg/cs=0 and (b) Vy'Ls/cs=2.

Figure 10. Schematic of resonant intervals in the (x,v ) plane.

Figure 11. The ion energy diffusivity §; and y/k2 normalized to gyro-reduced Bohm
transport csps2/LT observed in three-dimensional 8f gyrokinetic simulations as functions of

Vo'Lg/cs and Vo psLg/cs.
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